Note that the slope the given line is 3.3. So, it is not vertical.
Suppose that, this line makes an angle of thetaθ with the +ve+ve
direction of the X-X−Axis, where, theta in (0,pi)-{pi/2}.θ∈(0,π)−{π2}.
Clearly, then, the Unit vector vec u→u parallel to the line is given
by, vecu=(costheta, sintheta).→u=(cosθ,sinθ).
Now, by the Defn. of Slope, we have,
tan theta=3, theta in (0,pi)-{pi/2}.tanθ=3,θ∈(0,π)−{π2}.
"But, "tan theta gt 0 rArr 0 lt theta lt pi/2.But, tanθ>0⇒0<θ<π2.
sec^2theta=1+tan^2theta=1+9=10 rArr sectheta=+-sqrt10.sec2θ=1+tan2θ=1+9=10⇒secθ=±√10.
theta in (0,pi/2) rArr costheta=1/sectheta=+1/sqrt10.θ∈(0,π2)⇒cosθ=1secθ=+1√10.
Also, sintheta=tanthetasectheta=+3/sqrt10.sinθ=tanθsecθ=+3√10.
Hence, vec u=(1/sqrt10, 3/sqrt10).→u=(1√10,3√10).
The other vector parallel to the line is -vecu.−→u.
Enjoy Maths.!