How do you find the two unit vectors in R^2 parallel to the line y=3x+4?

1 Answer
Feb 24, 2017

Reqd. vectors are (+-1/sqrt10,+-3/sqrt10).(±110,±310).

Explanation:

Note that the slope the given line is 3.3. So, it is not vertical.

Suppose that, this line makes an angle of thetaθ with the +ve+ve

direction of the X-XAxis, where, theta in (0,pi)-{pi/2}.θ(0,π){π2}.

Clearly, then, the Unit vector vec uu parallel to the line is given

by, vecu=(costheta, sintheta).u=(cosθ,sinθ).

Now, by the Defn. of Slope, we have,

tan theta=3, theta in (0,pi)-{pi/2}.tanθ=3,θ(0,π){π2}.

"But, "tan theta gt 0 rArr 0 lt theta lt pi/2.But, tanθ>00<θ<π2.

sec^2theta=1+tan^2theta=1+9=10 rArr sectheta=+-sqrt10.sec2θ=1+tan2θ=1+9=10secθ=±10.

theta in (0,pi/2) rArr costheta=1/sectheta=+1/sqrt10.θ(0,π2)cosθ=1secθ=+110.

Also, sintheta=tanthetasectheta=+3/sqrt10.sinθ=tanθsecθ=+310.

Hence, vec u=(1/sqrt10, 3/sqrt10).u=(110,310).

The other vector parallel to the line is -vecu.u.

Enjoy Maths.!