How do you find the unit vector having the same direction as vector u = i - 6 j + 5 k?

1 Answer
Jul 1, 2016

Thus #" "hat(u)=1/sqrt(61)i-6/sqrt(61)j+5/sqrt(61)k #

Or if you prefer

#" "hat(u)=sqrt(61)/61i-(6sqrt(61))/61j+(5sqrt(61))/61k #

Explanation:

Given that #vec(u)=i-6j+5k#

Then #||u||=sqrt(1^2+(-6)^2+5^2)" "=" "sqrt(61)#

Not that 61 is a prime number

Thus #" "hat(u)=1/sqrt(61)i-6/sqrt(61)j+5/sqrt(61)k #

Or if you prefer

#" "hat(u)=sqrt(61)/61i-(6sqrt(61))/61j+(5sqrt(61))/61k #