How do you find the unit vector in the direction of the vector a = 2i + 3j?

1 Answer
Oct 26, 2016

vec(hata)=sqrt13/13(2veci+3vecj)ˆa=1313(2i+3j)

Explanation:

unit vector in direction of vecaa is given by

vec(hata)=veca/|a|ˆa=a|a|

so for veca=2veci+3vecja=2i+3j

vec(hata)=1/sqrt(2^2+3^2)(2veci+3vecj)ˆa=122+32(2i+3j)

vec(hata)=1/sqrt13(2veci+3vectj)ˆa=113(2i+3tj)

vec(hata)=sqrt13/13(2veci+3vecj)ˆa=1313(2i+3j)