How do you find the unit vector in the direction of the vector a = 3i + 4j?

1 Answer
Aug 7, 2016

1/5 a15a

Explanation:

The unit vector in the direction of

a = r < cos theta, sin theta>a=r<cosθ,sinθ> is

(cos theta, sin theta)(cosθ,sinθ).

So, the unit vector is 1/r a1ra.

Here, it is (<3, 4>)/|<3, 4>|=1/sqrt(3^2+4^2) a=1/5 a<3,4>|<3,4>|=132+42a=15a