How do you find the unit vector in the same direction as (-5, 3)?

1 Answer
Aug 13, 2017

Given a vector vecv = (a,b)v=(a,b); the unit vector is:

hatv = vecv/|vecv|ˆv=vv

Where |vecv| = sqrt(a^2+b^2)v=a2+b2

Explanation:

Given: vecv = (-5,3)v=(5,3)

hatv = ("("-5,3")")/sqrt((-5)^2+3^2)ˆv=(5,3)(5)2+32

hatv = ("("-5,3")")/sqrt(34)ˆv=(5,3)34

hatv = (-5/sqrt(34),3/sqrt(34))ˆv=(534,334)