How do you find the value for sin^-1 (-1/sqrt2)?

2 Answers

-\pi/4

Explanation:

Notice, -\pi/2\le \sin x\le \pi/2\ \ \forall \ \ x\in R

\therefore \sin^{-1}(-1/\sqrt2)

=-\sin^{-1}(1/\sqrt2)

=-\pi/4

Jul 27, 2018

As below

Explanation:

theta = sin ^-1 (-1/sqrt2)

sin theta = - 1/sqrt2

theta = 135^@ or -45^@ = ((5pi)/4)^c or ((7pi)/4)^c

Generalizing, theta = (n pi + (pi/4))^c, where n is odd integer & theta = (n pi - (pi/4))^c where n is even integer.