How do you find the value for sin(arccos(-1/3))?

2 Answers
Jun 11, 2015

Use calculator to evaluate theta = arccos(-1/3), allow for theta+pi (since cos(theta) = cos(theta+pi)); use calculator to evaluate the two values of theta (within the 0 to 2pi range.

Explanation:

Using caluclator
color(white)("XXXX")arccos(-1/3) = 1.910633
color(white)("XXXX")color(white)("XXXX")i.e cos(1.910633) = -1/3
color(white)("XXXX")note that
color(white)("XXXX")color(white)("XXXX")cos(1.910633+pi) also = -1/3

Using calculator evaluate:
color(white)("XXXX")sin(1.910633) = 0.942809
and
color(white)("XXXX")sin(1.910633+pi) = sin(4.372552) = -0.942809

Jun 11, 2015

Find sin (arccos (-1/3))

Explanation:

cos x = -1/3 --> arc x?

Calculator gives x = +- 109.47.
Now, find sin (+- 109.47)

sin (109.47) = 0.94
sin (-109.47) = -0.94