How do you find the value for sin2theta, cos2theta, and tan2theta and the quadrant in which 2theta lies given costheta=-3/5 and theta is in quadrant III?

1 Answer
Sep 15, 2016

(1) : sin 2theta=24/25; (2) : cos2theta=-7/25; (3) : tan2theta=-24/7.

(4) : 2theta" lies in "Q_(II).

Explanation:

theta in Q_(III) rArr pi lt theta lt 3pi/2... ... (0) rArr sin theta lt 0

Now, cos theta =-3/5 rArr sin theta =-sqrt(1-(-3/5)^2)=-4/5.

:. sin 2theta=2sinthetacostheta=2(-4/5)(-3/5)=24/25... ...(1)

cos2theta=2cos^2theta-1=2(-3/5)^2-1=-7/25... ... (2)

From (0), 2pi lt theta lt 3pi rArr 2theta in Q_IuuQ_(II).

But, (1) & (2) confirm that 2theta lies in Q_(II).

Finally, by (1) & (2), tan 2theta=sin(2theta)/cos(2theta)=-24/7.