How do you find the value for tan^-1[tan(5pi/7)]tan1[tan(5π7)]?

1 Answer
May 28, 2015

The formula
tan^(-1)[tan(a)]=atan1[tan(a)]=a
works for a in (-pi/2;pi/2)a(π2;π2)

In our case (5pi)/7>pi/25π7>π2 but we can use the periodicity of tantan:
tan((5pi)/7)=tan((5pi)/7-pi)=tan(-(2pi)/7)tan(5π7)=tan(5π7π)=tan(2π7)
tan^(-1)[tan((5pi)/7)]=tan^(-1)[tan(-(2pi)/7)]=-(2pi)/7tan1[tan(5π7)]=tan1[tan(2π7)]=2π7

Btw, a similar formula
tan[tan^(-1)(a)]=atan[tan1(a)]=a
works for all a in RR.