For any angle #theta#, we have #cos 2theta = cos^2 theta - sin^2 theta#. We also know that #sin^2 theta + cos ^2 theta = 1#.
So #cos 2theta = cos^theta - sin^2theta#
#= (1-sin^2 theta)-sin^2theta#
#=1-sin^2theta#
If #theta = sin^-1(-24/25)#
then #sin theta = -24/25#
and #cos 2theta = 1-sin^2theta#
#=1-(-24/25)^2#
#=1-(24/25)^2#
#=1-24^2/25^2#
#=(25^2-24^2)/25^2#
#=((24+1)^2-24)/25^2#
#=((2xx24)+1)/25^2#
#=49/625#