How do you find the value of cot2thetacot2θ given cottheta=4/3cotθ=43 and pi<theta<(3pi)/2π<θ<3π2? Trigonometry Trigonometric Identities and Equations Double Angle Identities 1 Answer Shwetank Mauria Jul 21, 2016 cot2theta=7/24cot2θ=724 Explanation: cot2theta=(cot^2theta-1)/(2cottheta)cot2θ=cot2θ−12cotθ = ((4/3)^2-1)/(2xx4/3)(43)2−12×43 = (16/9-1)/(8/3)169−183 = ((16-9)/9)/(8/3)16−9983 = 7/9xx3/879×38 = 7/(3cancel9)xx(1cancel3)/8 = 7/24 Answer link Related questions What are Double Angle Identities? How do you use a double angle identity to find the exact value of each expression? How do you use a double-angle identity to find the exact value of sin 120°? How do you use double angle identities to solve equations? How do you find all solutions for sin 2x = cos x for the interval [0,2pi]? How do you find all solutions for 4sinthetacostheta=sqrt(3) for the interval [0,2pi]? How do you simplify cosx(2sinx + cosx)-sin^2x? If tan x = 0.3, then how do you find tan 2x? If sin x= 5/3, what is the sin 2x equal to? How do you prove cos2A = 2cos^2 A - 1? See all questions in Double Angle Identities Impact of this question 4346 views around the world You can reuse this answer Creative Commons License