Suppose that, #tan^-1(7/24)=theta#. Then, by Defn. of #tan^-1# function, #tan theta=7/24, theta in (-pi/2,pi/2)#
Since, #tan theta >0, theta !in (-pi/2,0), &, so, theta in (0,pi/2)#.
We know that, #csc^2 theta=1+cot^2 theta=1+1/tan^2 theta#.
#:. csc^2 theta=1+(24/7)^2=(7^2+24^2)/7^2=25^2/7^2#
#:. csc theta=+-24/7", but, as," theta in (0,pi/2), csc theta =+25/7, or, sin theta=7/25#.
Therefore, #"the reqd. value"=sin(tan^-1(7/24))#
#=sin theta=7/25#.
Alternatively , we can use the conversion formula :
# tan^-1x=sin^-1(x/sqrt(1+x^2)), where, x>0#, to give,
#tan^-1(7/24)=sin^-1(7/25)#, and hence,
#sin(tan^-1(7/24))=sin(sin^-1(7/25))=7/25#, as before!
Enjoy Maths.!