How do you find the vertex of y=2x2+10x+8?
1 Answer
Mar 30, 2018
Explanation:
Given the equation of a parabola in standard form
∙xy=ax2+bx+cx;a≠0
then the x-coordinate of the vertex is
∙xxvertex=−b2a
y=2x2+10x+8 is in standard form
with a=2,b=10 and c=8
⇒xvertex=−104=−52
substitute this value into the equation for y-coordinate
yvertex=2(−52)2+10(−52)+8=−92
⇒vertex =(−52,−92)
graph{2x^2+10x+8 [-10, 10, -5, 5]}