How do you find the Vertical, Horizontal, and Oblique Asymptote given (6e^x)/(e^x-8)6exex8?

1 Answer
Dec 1, 2016

The vertical asymptote is x=ln8x=ln8
The horizontal asymptotes are y=0y=0 and y=6y=6
No oblique asymptote

Explanation:

As you cannot divide by 00

The denominator must be !=00

e^x-8!=0ex80

e^x!=8ex8

x!=ln8xln8

So the vertical asymptote is x=ln8x=ln8

Let f(x)=(6e^x)/(e^x-8)f(x)=6exex8

f(x)=(6e^x)/(e^x-8)=6/(1-8e^(-x))f(x)=6exex8=618ex

lim_(x->-oo)f(x)=lim_(x->-oo)6/((1-8e^(-x)))=6/-oo=0^(-)

lim_(x->+oo)f(x)=lim_(x->+oo)6/((1-8e^(-x)))=6

The horizontal asymptotes are y=0 and y=6

graph{(6e^x)/(e^x-8) [-15.04, 16.99, -5.05, 10.96]}