How do you find the Vertical, Horizontal, and Oblique Asymptote given f(x) = 4/(x - 2)^3?

1 Answer
Nov 10, 2016

The vertical asymptote is x=2
The horizontal asymptote is y=0
There are no oblique asymptote.

Explanation:

As we cannot divide by 0, the vertical asymptote is x=2

There are no oblique asymptotes as the degree of the numerator is < degree of the denominator:

lim_(x->-oo)f(x)=lim_(x->-oo)(4/x^3)=0^-

lim_(x->+oo)f(x)=lim_(x->+oo)(4/x^3)=0^+

The horizontal asymptote is y=0

graph{4/(x-2)^3 [-10, 10, -5, 5]}