How do you find the Vertical, Horizontal, and Oblique Asymptote given (x^3+4)/(2x^2+x-1)?

1 Answer
Feb 20, 2017

The vertical asymptotes are x=1/2 and x=-1
The oblique asymptote is y=x/2-1/4
No horizontal asymptote

Explanation:

Let start by factorising the denominator

2x^2+x-1=(2x-1)(x+1)

Let f(x)=(x^3+4)/(2x^2+x-1)=(x^3+4)/((2x-1)(x+1))

As, we cannot divide by 0, x!=1/2 and x!=-1

The vertical asymptotes are x=1/2 and x=-1

As the degree of the numerator is > than the degree of the denominator, we have an oblique asymptote.

Let's do a long division

color(white)(aaaa)x^3color(white)(aaaaaaaaaaaa)+4color(white)(aaaa)|2x^2+x-1

color(white)(aaaa)x^3+x^2/2-x/2color(white)(aaaa)#color(white)(aaaaa)|#1/2x-1/4

color(white)(aaaaa)0-x^2/2+x/2color(white)(aaaa)+4

color(white)(aaaaaaa)-x^2/2-x/4color(white)(a)+1/4

color(white)(aaaaaaa)-0+3/4xcolor(white)(aaaaa)+15/4

Therefore,

f(x)=x/2-1/4+(3/4x+15/4)/(2x^2+x-1)

lim_(x->-oo)f(x)-(x/2-1/4)=lim_(x->-oo)(3/4x)/(2x^2)=0^-

lim_(x->+oo)f(x)-(x/2-1/4)=lim_(x->+oo)(3/4x)/(2x^2)=0^+

The oblique asymptote is y=x/2-1/4

graph{(y-(x^3+4)/(2x^2+x-1))(y-x/2+1/4)=0 [-18.02, 18.03, -9, 9.02]}