How do you find the Vertical, Horizontal, and Oblique Asymptote given y = (2x^2 - 11)/( x^2 + 9)?

1 Answer
Nov 10, 2016

Only a horizontal asymptote y=2.

Explanation:

As y=(2x^2-11)/(x^2+9)=(2-11/x^2)/(1+9/x^2)

Lt_(x->+-oo)(2-11/x^2)/(1+9/x^2)=2

Also observe that the denominator x^2+9>0, as x^2 is always positive.

Hence we have only a horizontal asymptote y=2.
graph{(y-(2x^2-11)/(x^2+9))(y-2)=0 [-10, 10, -5, 5]}