How do you find the Vertical, Horizontal, and Oblique Asymptote given y = (x^2 - 5x + 6)/( x - 3)y=x25x+6x3?

1 Answer
Feb 7, 2017

This is the equation of the line y=x-2y=x2

Explanation:

Let's factorise the numerator

x^2-5x+6=(x-3)(x-2)x25x+6=(x3)(x2)

So,

y=(x^2-5x+6)/(x-3)=(cancel(x-3)(x-2))/cancel(x-3)

y=x-2

This is the equation of a line

graph{(x^2-5x+6)/(x-3) [-12.66, 12.65, -6.33, 6.33]}