How do you find the vertical, horizontal and slant asymptotes of: f(x)= (4x^2+ 4x-24)/(x^4- 2x^3 - 9x^2+ 18x)?
1 Answer
Explanation:
The numerator factors like this:
4x^2+4x-24 = 4(x^2+x-6) = 4(x+3)(x-2)
The denominator factors like this:
x^4-2x^3-9x^2+18x
= x((x^3-2x^2)-(9x-18))
= x(x^2(x-2)-9(x-2))
= x(x^2-9)(x-2)
= x(x-3)(x+3)(x-2)
Note the common factors
f(x) = (4x^2+4x-24)/(x^4-2x^3-9x^2+18x)
= (4color(red)(cancel(color(black)((x+3))))color(red)(cancel(color(black)((x-2)))))/(x(x-3)color(red)(cancel(color(black)((x+3))))color(red)(cancel(color(black)((x-2)))))
= (4)/(x(x-3))
So when
As
graph{(4x^2+4x-24)/(x^4-2x^3-9x^2+18x) [-10, 10, -5, 5]}