How do you find the vertical, horizontal or slant asymptotes for (3e^x) /( e^x-2)3exex2?

1 Answer
Dec 25, 2016

Horizontal;) y=0 and y = 3. Vertical: x=ln 2=0.6931x=ln2=0.6931, nearly.

Explanation:

graph{3e^x/(e^x-2) [-20, 20, -10, 10]}

y=3e^x/(e^x(1-2e^(-x)))=3/(1-2e^(-x))y=3exex(12ex)=312ex

As x to oo, y to 3x,y3. As x to -oo, y to 0x,y0.

So, y - 0 and y = 3 are asymptotes.

By actual division,

y = 3+6/(e^x-2)y=3+6ex2

Here, as e^x to 2, y to ooex2,y.

So, x = ln 2 gives yet another asymptote.