How do you find the vertical, horizontal or slant asymptotes for x/(1-x)^2?

1 Answer
Nov 13, 2016

The vertical asymptote is x=-1
The vertical asymptote is y=0
No slant asymptote

Explanation:

Let f(x)=x/(1-x)^2

As you cannot divide by 0, so a vertical asymptote is x=1

The degree of the numerator < the degree of the denominator, so there is no slant asymptote.

lim_(x->-oo)f(x)=lim_(x->-oo)x/(x^2)=lim_(x->-oo)1/x=0^(-)

lim_(x->+oo)f(x)=lim_(x->+oo)x/(x^2)=lim_(x->+oo)1/x=0^(+)

So, the horizontal asymptote is y=0

lim_(x->1^(-))f(x)=lim_(x->1^(-))x/(1-x)^2=+oo

lim_(x->1^(+))f(x)=lim_(x->1^(+))x/(1-x)^2=+oo

graph{x/(1-x)^2 [-8.89, 8.885, -4.444, 4.44]}