How do you find the vertical, horizontal or slant asymptotes for y=(x^2-1)/(2x^2 + 3x-2)y=x212x2+3x2?

1 Answer
Oct 23, 2016

The vertical asymptotes are x=1/2x=12 and x=-2x=2

The horizontal asymptote is y=1/2y=12

Explanation:

We facorise y=((x+1)(x-1))/((2x-1)(x+2))y=(x+1)(x1)(2x1)(x+2)
As we cannot divide by 00
So for x=1/2x=12 and x=-2x=2 we have vertical asymptotes
To look for horizontal asymptotes, we rewrite
yy as y=(1-1/x^2)/(2+3/x-2/x^2)y=11x22+3x2x2

the limit y=(1-0)/(2+0+0)=1/2y=102+0+0=12
y->-ooy

the limit y=(1-0)/(2+0+0)=1/2y=102+0+0=12
y->+ooy+
So y=1/2y=12 is a horizontal asymptote