How do you find the vertical, horizontal or slant asymptotes for y= x / e^xy=xex?

1 Answer
Nov 16, 2016

The horizontal asymptote is y=0y=0
No slant or vertical asymptote.

Explanation:

The exponential function e^xex is always positive.

AA x inRR, e^x>0

So we don't have a vertical asymptote:

lim_(x->-oo)y=x/e^(-oo)=(-oo*e^(oo))=-oo

lim_(x->+oo)y=x/e^(+oo)=(x/e^(oo))=0^(+)

We have a horizontal asymptote y=0

graph{(y-x/e^x)(y)=0 [-6.29, 7.757, -4.887, 2.136]}