How do you find the volume of the solid #y=x^2, y=x^3# revolved about the x-axis?
1 Answer
Volume
Explanation:
graph{(y-x^2)(y-x^3)=0 [-0.1, 1.5, -0.1, 1.5]}
The Volume of Revolution about
# V= int_(x=a)^(x=b) \ pi y^2 \ dx #
So, the volume of revolution bounded by two curves
# V = int_(x=a)^(x=b) \ pi f^2(x) \ dx - int_(x=a)^(x=b) \ pi g^2(x) \ dx #
# \ \ = int_(x=a)^(x=b) \ pi {f^2(x) - g^2(x)} \ dx #
We can see by observation that the points of intersection of the curves
So for for this problem:
# V= int_0^1 \ pi { (x^2)^2 -(x^3)^2} \ dx #
# \ \ \= pi \ int_0^1 \ x^4-x^6 \ dx #
# \ \ \= pi \ [x^5/5-x^7/7]_0^1#
# \ \ \= pi \ { (1/5-1/7) - (0)}#
# \ \ \= pi * 2/35#
# \ \ \= (2pi)/35#