How do you find two unit vectors orthogonal to both i-j+k and 4j+4k?

1 Answer
Mar 5, 2017

+-1/sqrt6(-2,-1,1).

Explanation:

Let us recall that, for vectors veca and vecb, their Vector

(Cross) Product , i.e., veca xx vecb is Orthogonal to both

vec a and vec b.

The Desired Unit Vectors, then, can be obtained by,

+-(vecaxxvecb)/||(vecaxxvecb)||.

Now, with veca=i-j+k=(1,-1,1), &, vecb=4j+4k=4(0,1,1), we have,

veca xx vecb=|(i,j,k),(1,-1,1),(0,4,4)|=4|(i,j,k),(1,-1,1),(0,1,1)|

=4(-2,-1,1),

rArr ||(vecaxxvecb)||=4sqrt{(-2)^2+(-1)^1+1^2}=4sqrt6.

Hence, the desired vectors are, (+-4(-2,-1,1))/(4sqrt6), or,

+-1/sqrt6(-2,-1,1).

Enjoy Maths.!