How do you find vertical, horizontal and oblique asymptotes for (x^4 - 2x + 3) / (6 - 5x^3)?

1 Answer
Feb 18, 2017

Slant asymptote : x+5y=0.
Vertical asymptote : uarrx = (6/5)^(1/3)=1.063darr, hearly.

See depiction by Socratic graphs.

Explanation:

graph{(x^4-2x+3)/(6-5x^3) [-10, 10, -5, 5]}
graph{(x-1-.025y)((x^4-2x+3)/(6-5x^3)-y)(x+5y)=0 [-20, 20, -10, 10]}

By actual division,

y = -x/5+(3-4/5x) / (5(((6/5)^(1/3))^3-x^3)

=x/5+(3-4/5x)/(5(((6/5)^(1/3)-x)((6/5)^(2/3)+(6/5)^(1/3)x+x^2)))

revealing the slant asymptote

y =-x/5 and the vertical asymptote

x=(6/5)^(1/3)=1.063, nearly