How do you find vertical, horizontal and oblique asymptotes for (x^4 - 8x^2 +16) / x^2x48x2+16x2?

1 Answer
Jan 3, 2017

The vertical asymptote is x=0x=0
No horizontal asymptote
No slant asymptote

Explanation:

Let's rewrite the expression

(x^4-8x^2+16)/x^2x48x2+16x2

Let f(x)=(x^4-8x^2+16)/x^2f(x)=x48x2+16x2

The domain of f(x)f(x) is D_f(x)=RR-{0}

As you canot divide by 0, x!=0

lim_(x->+-oo)f(x)=lim_(x->+-oo)x^4/x^2=lim_(x->+-oo)x^2=+oo

graph{(y-(x^4-8x^2+16)/(x^2))(y-1000x)=0 [-10, 10, -5, 5]}