How do you get the complex cube root of 8?
1 Answer
The cube roots of
Explanation:
Here are the cube roots of
graph{(x^2+y^2-4)((x-2)^2+y^2-0.01)((x+1)^2+(y-sqrt(3))^2-0.01)((x+1)^2+(y+sqrt(3))^2-0.01) = 0 [-5, 5, -2.5, 2.5]}
They can be written as:
#2(cos(0)+i sin(0)) = 2#
#2(cos((2pi)/3) + i sin((2pi)/3)) = -1 + sqrt(3)i = 2omega#
#2(cos((4pi)/3) + i sin((4pi)/3)) = -1 - sqrt(3)i = 2omega^2#
One way of finding these cube roots of
#x^3-8 = (x-2)(x^2+2x+4)#
The quadratic factor can be solved using the quadratic formula:
#x = (-b +-sqrt(b^2-4ac))/(2a)#
#=(-2+-sqrt(-12))/2#
#=-1+-sqrt(3)i#