How do you graph #f(x)=-2/x# using holes, vertical and horizontal asymptotes, x and y intercepts?

1 Answer
Sep 30, 2017

See below.

Explanation:

#y = -2/x#

#y# axis intercepts occur where #x=0#

#y= -2/(0)# Undefined (Division by zero):

#x# axis intercepts occur where #y=0#:

#0=-2/x#

Solving for #x#

#0x = -2=> 0!= -2#

No intercepts of #x# axis:

As #x-> oo#

#-2/x-> 0#

As #x->-oo#

#-2/x-> 0#

#x# axis is a horizontal asymptote.

Left hand limit:

#lim_(x->0^-)-2/x->oo#

Right hand limit:

#lim_(x->0^+)-2/x->-oo#

#y# axis is a vertical asymptote.

Graph of #y=-2/x#

graph{y=-2/x [-10, 10, -10, 10]}