How do you graph y=-1/4tan8pixy=14tan8πx?

1 Answer
Jul 11, 2018

As Below.

Explanation:

Standard form of tangent function is y = A tan (Bx - C) + Dy=Atan(BxC)+D

"Given : " y = -(1/4) tan (8pi x)Given : y=(14)tan(8πx)

A = -1/4, B = 8 pi, C = D = 0A=14,B=8π,C=D=0

Amplitude = |A| = "NONE for tangent function"Amplitude=|A|=NONE for tangent function

"Period " = pi / |B| = (pi)/(8pi) = 1/8Period =π|B|=π8π=18

"Phase Shift " = -C / B = 0, " No Phase Shift"Phase Shift =CB=0, No Phase Shift#

"Vertical Shift " = D = 0, " No Vertical Shift"Vertical Shift =D=0, No Vertical Shift

graph{-(1/4) tan(8 pi x) [-10, 10, -5, 5]}