How do you graph y=3csc(pi/2x+pi/2)y=3csc(π2x+π2)?

1 Answer
Jun 7, 2018

As below.

Explanation:

Standard form of co-secant function color(red)(y = A csc(Bx - C) + Dy=Acsc(BxC)+D

"Given " y = 3 csc ((pi/2)x + pi/2)Given y=3csc((π2)x+π2)

"Amplitude " = |A| = color(crimson)("NONE ") " for co-secant function"Amplitude =|A|=NONE for co-secant function

"Period " = (2pi) / |B| = (2pi) / (pi/2) = 4Period =2π|B|=2ππ2=4

"Phase Shift " = -C / B = -(pi/2) / (pi/2) = -1Phase Shift =CB=π2π2=1

"Vertical Shift " = D = 0Vertical Shift =D=0

graph{3 csc ((pi/2)x + (pi/2)) [-10, 10, -5, 5]}