How do you graph #y =(x^2-3)/(x-1)#?

1 Answer
Mar 19, 2018

See explanation

Explanation:

If you are dealing with questions at this level you know how to find the #x and y# intercepts
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Undefined at #x=1# as we have #y=(-2)/0# Thus we have vertical asymptotic behaviour
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Investigating "x->1)#

If we have #y=((x^2+deltax)^2-3)/(x+deltax-1)# where #x=1#

Then we have #y=("negative")/("positive") <0#

x -> 0^+ #}lim_(x->0^+)(x^2-3)/(x-1)->k# where #k->-oo#

Conversely

If we have #y=((x^2-deltax)^2-3)/(x-deltax-1)# where #x=1#

Then we have #y=("negative")/("negative") >0#

x-> 0^- #}lim_(x->0^-)(x^2-3)/(x-1)->k# where #k->+oo#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#color(blue)("Investigating "x->+oo)#

The temptation is to state the the const values become insignificant so we end up with #y=x^2/x->y=x#
THIS IS WRONG

If we actually divide the denominator into the numerator we get

#y=x+(x-3)/(x-1)#

Now when we take limits we end up with #y=oo+(oo)/(oo)#

Set #x=oo# gives #color(blue)(y=x+1)# as an oblique asymptote
Tony B