How do you identify all asymptotes or holes for f(x)=(-2x^3-12x^2-16x)/(x^3+x^2-2x)f(x)=2x312x216xx3+x22x?

1 Answer
Dec 13, 2016

The vertical asymptote is x=1x=1
The holes are when x=0x=0 and x=-2x=2

The horizontal asymptote is y=-2y=2

Explanation:

Let's factorise the numerator

-2x^3-12x^2-16x=-2x(x^2+6x+8)2x312x216x=2x(x2+6x+8)
=-2x(x+2)(x+4)=2x(x+2)(x+4)

Lets factorise the denominator

x^3+x^2-2x=x(x^2+x-2)=x(x+2)(x-1)x3+x22x=x(x2+x2)=x(x+2)(x1)

So,

f(x)=(-2x^3-12x^2-16x)/(x^3+x^2-2x)f(x)=2x312x216xx3+x22x

=(-2cancelxcancel(x+2)(x+4))/(cancelxcancel(x+2)(x-1))

=(-2(x+4))/(x-1)

There are holes when x=0 and x=-2

As you cannot divide by 0, x!=1

So, the vertical asymptote is x=1

Now, we calculate the limits as x->oo

lim_(x->+-oo)f(x)=lim_(x->+-oo)(-2x)/x=lim_(x->+-oo)-2=-2

The horizontal asymptote is y=-2

graph{(y-(-2(x+4))/(x-1))=0 [-41.1, 41.1, -20.56, 20.56]}