How do you identify all horizontal and slant asymptote for f(x)=(2x^3-x^2-2x+1)/(x^2+3x+2)?

1 Answer
Nov 9, 2016

The vertical asymptote is x=-2
The slant asymptote is y=2x-7
There are no horizontal asymptote

Explanation:

The denominator can be factorised as (x+2)(x+1)
So the vertcal asymptote is x=-2
Let's do a long division to simplify f(x)
color(white)(aaaa)2x^3-x^2-2x+1color(white)(aaaa)x^2+3x+2
color(white)(aaaa)2x^3+6x^2+4xcolor(white)(aaaaaaa)2x-7
color(white)(aaaaaa)0-7x^2-6x+1
color(white)(aaaaaaaa)-7x^2-21x-14
color(white)(aaaaaaaaa)-0+15x+15

(2x^3-x^2-2x+1)/(x^2+3x+2)=2x-7+(15cancel(x+1))/((x+2)cancel(x+1))

:. y=2x-7 is a slant asymptote
Also, f(x)=((2x-1)(x+1)(x-1))/((x+2)(x+1))=((2x-1)(x-1))/(x+2)
lim_(x->+oo)f(x)=lim_(x->+oo)2x=+oo
lim_(x->-oo)f(x)=lim_(x->-oo)2x=-oo

graph{(y-((2x^3-x^2-2x+1)/(x^2+3x+2)))(y-2x+7)=0 [-83.3, 83.4, -41.7, 41.74]}