How do you implicitly differentiate 11=-xy^2-(xy)/(2x-y)11=xy2xy2xy?

1 Answer
Nov 3, 2016

dy/dx=(y^3-4xy^2-y-22)/(4x^2y -3xy^2 +x-11)dydx=y34xy2y224x2y3xy2+x11

Explanation:

11=-xy^2-(xy)/(2x-y)11=xy2xy2xy

11(2x-y)=-xy^2(2x-y)-xy11(2xy)=xy2(2xy)xy

22x-11y=-2x^2y^2+xy^3-xy22x11y=2x2y2+xy3xy

22-11dy/dx=-4xy^2-4x^2y dy/dx+y^3+3xy^2 dy/dx-y-xdy/dx2211dydx=4xy24x2ydydx+y3+3xy2dydxyxdydx

4x^2y dy/dx-3xy^2 dy/dx+xdy/dx-11dy/dx=y^3-4xy^2-y-224x2ydydx3xy2dydx+xdydx11dydx=y34xy2y22

dy/dx(4x^2y -3xy^2 +x-11)=y^3-4xy^2-y-22dydx(4x2y3xy2+x11)=y34xy2y22

dy/dx=(y^3-4xy^2-y-22)/(4x^2y -3xy^2 +x-11)dydx=y34xy2y224x2y3xy2+x11