How do you implicitly differentiate 11=-xy^2-(xy)/(2x-y)?

1 Answer
Nov 3, 2016

dy/dx=(y^3-4xy^2-y-22)/(4x^2y -3xy^2 +x-11)

Explanation:

11=-xy^2-(xy)/(2x-y)

11(2x-y)=-xy^2(2x-y)-xy

22x-11y=-2x^2y^2+xy^3-xy

22-11dy/dx=-4xy^2-4x^2y dy/dx+y^3+3xy^2 dy/dx-y-xdy/dx

4x^2y dy/dx-3xy^2 dy/dx+xdy/dx-11dy/dx=y^3-4xy^2-y-22

dy/dx(4x^2y -3xy^2 +x-11)=y^3-4xy^2-y-22

dy/dx=(y^3-4xy^2-y-22)/(4x^2y -3xy^2 +x-11)