How do you implicitly differentiate 2=e^(x-y)-x/cosy 2=exyxcosy?

1 Answer
Mar 5, 2017

dy/dx = frac{(cos^2y)(e^(x-y))-cosy}{(cos^2y)(e^(x-y))+xsiny}dydx=(cos2y)(exy)cosy(cos2y)(exy)+xsiny

Explanation:

2=e^(x-y)-frac{x}{cosy}2=exyxcosy

0=(1-dy/dx)e^(x-y)-frac{cosy+xsiny(dy/dx)}{cos^2y}0=(1dydx)exycosy+xsiny(dydx)cos2y

0=e^(x-y)-e^(x-y)(dy/dx)-secy-(xsiny)/cos^2y (dy/dx)0=exyexy(dydx)secyxsinycos2y(dydx)

0=dy/dx(-e^(x-y)-(xsiny)/cos^2y)+e^(x-y)-secy0=dydx(exyxsinycos2y)+exysecy

dy/dx(e^(x-y)+(xsiny)/cos^2y)=e^(x-y)-secydydx(exy+xsinycos2y)=exysecy

dy/dx = frac{e^(x-y)-secy}{(e^(x-y)+(xsiny)/cos^2y)}dydx=exysecy(exy+xsinycos2y)

dy/dx = frac{(cos^2y)(e^(x-y))-cosy}{(cos^2y)(e^(x-y))+xsiny}dydx=(cos2y)(exy)cosy(cos2y)(exy)+xsiny

This fraction could be manipulated more to make terms cancel (eg multiplying by the conjugate of the denominator, etc.), but I have isolated dy/dxdydx.