How do you implicitly differentiate 22=(y)/(1-xe^y)22=y1xey?

1 Answer
Apr 7, 2018

(dy)/(dx)=(22e^y)/(y-23)dydx=22eyy23

Explanation:

We have;

22=y/(1-xe^y)22=y1xey

=>22-22xe^y=y2222xey=y

22-y=22xe^y22y=22xey

(22-y)/(22e^y)=x22y22ey=x

x=(22-y)/(22e^y)x=22y22ey

Diff.w.r.t. color(red)(y)y and "using"color(blue)" Quotient Rule"

(dx)/(dy)=(22e^yd/(dy)(22-y)-(22-y)d/(dy)(22e^y))/(22e^y)^2

=>(dx)/(dy)=(22e^y(-1)-(22-y)(22e^y))/(22e^y)^2

=>(dx)/(dy)=(22e^y(-1-22+y))/(22e^y)^2

=>color(red)((dx)/(dy))=(y-23)/(22e^y)to,But , [(dx)/(dy)=1/((dy)/(dx))]

=>color(red)((dy)/(dx))=(22e^y)/(y-23)