How do you implicitly differentiate #-3=cos(y-x)/x#?

1 Answer
Mar 16, 2016

#frac{"d"y}{"d"x} = 1 - cot(y-x)/x#

Explanation:

Differentiate both sides w.r.t. #x#. Use the quotient rule and the chain rule along the way.

#frac{"d"}{"d"x}(3) = frac{"d"}{"d"x}( cos(y-x)/x )#

#0 = frac{ xfrac{"d"}{"d"x}( cos(y-x) ) - cos(y-x)frac{"d"}{"d"x}(x) }{x^2}#

#0 = x(-sin(y-x))frac{"d"}{"d"x}(y-x) - cos(y-x)#

#0 = xsin(y-x)(frac{"d"y}{"d"x}-1) + cos(y-x)#

Now, we just have to make #frac{"d"y}{"d"x}# the subject of formula. Begin by bringing all the terms containing #frac{"d"y}{"d"x}# to one side.

#xsin(y-x) - cos(y-x) = xsin(y-x)frac{"d"y}{"d"x}#

#frac{"d"y}{"d"x} = frac{xsin(y-x) - cos(y-x)}{xsin(y-x)}#

#= 1 - cot(y-x)/x#