How do you implicitly differentiate 3y + y^4/x^2 = 23y+y4x2=2?

Thanks for your help!

1 Answer
Dec 8, 2016

For problems like these, we must remember that we're differentiating with respect to x.

3 + (4y^3x^2(dy/dx) - 2x(y^4))/(x^2)^2 = 03+4y3x2(dydx)2x(y4)(x2)2=0

3(dy/dx) + (4y^3x^2(dy/dx)- 2xy^4)/x^4 = 03(dydx)+4y3x2(dydx)2xy4x4=0

(3x^4(dy/dx) + 4y^3x^2(dy/dx) - 2xy^4)/x^4 =03x4(dydx)+4y3x2(dydx)2xy4x4=0

3x^4(dy/dx) + 4y^3x^2(dy/dx) - 2xy^4 =03x4(dydx)+4y3x2(dydx)2xy4=0

3x^4(dy/dx) + 4y^3x^2(dy/dx) = 2xy^43x4(dydx)+4y3x2(dydx)=2xy4

dy/dx(3x^4 + 4y^3x^2) = 2xy^4dydx(3x4+4y3x2)=2xy4

dy/dx = (2xy^4)/(3x^4 + 4y^3x^2)dydx=2xy43x4+4y3x2

dy/dx = (2xy^4)/(x^2(3x^2 + 4y^3))dydx=2xy4x2(3x2+4y3)

dy/dx = (2y^4)/(3x^3 + 4xy^3)dydx=2y43x3+4xy3

Hopefully this helps!