How do you implicitly differentiate 3y + y^4/x^2 = 23y+y4x2=2?

Thanks for your help!

1 Answer
Aug 5, 2016

(dy)/(dx)=(2xy^4)/(3x^4+4y^3)dydx=2xy43x4+4y3

Explanation:

When we implicitly differentiate a function f(x,y)=0f(x,y)=0, whenever we differentiate w.r.t. we use chain rule and when we differentiate w.r.t. yy and then multiply it by (dy)/(dx)dydx.

As such as we have 3y+y^4/x^2=23y+y4x2=2

3xx1xx(dy)/(dx)+(4y^3xx(dy)/(dx)-y^4xx2x)/x^4=03×1×dydx+4y3×dydxy4×2xx4=0 or

3(dy)/(dx)+(4y^3(dy)/(dx)-2xy^4)/x^4=03dydx+4y3dydx2xy4x4=0 or

3(dy)/(dx)+4y^3/x^4(dy)/(dx)-2y^4/x^3=03dydx+4y3x4dydx2y4x3=0 or

(dy)/(dx)[3+(4y^3)/x^4]=(2y^4)/x^3dydx[3+4y3x4]=2y4x3 or

(dy)/(dx)=((2y^4)/x^3)/(3+(4y^3)/x^4)dydx=2y4x33+4y3x4 or

(dy)/(dx)=(2xy^4)/(3x^4+4y^3)dydx=2xy43x4+4y3