How do you implicitly differentiate 3y + y^4/x^2 = 23y+y4x2=2?

Thanks for your help!

2 Answers
Jul 7, 2016

I found: (dy)/(dx)=(2y^4)/(3x^3+4xy^3)dydx=2y43x3+4xy3

Explanation:

ou need to remember to derive also yy as a function of xx, so, for example:
y^2y2 derived will give you: 2y(dy)/(dx)2ydydx
in your case you get:
3(dy)/(dx)+(4y^3x^2(dy)/(dx)-2xy^4)/x^4=03dydx+4y3x2dydx2xy4x4=0
3(dy)/(dx)+4y^3/x^2(dy)/(dx)-2y^4/x^3=03dydx+4y3x2dydx2y4x3=0
collect (dy)/(dx)dydx and rearrange:
(dy)/(dx)=(2y^4/x^3)/(3+4y^3/x^2)=(2y^4)/(3x^3+4xy^3)dydx=2y4x33+4y3x2=2y43x3+4xy3