#sqrt(3x+3y)+sqrt(3xy) = 17.5#
#sqrt(3x+3y)+sqrt(3xy) = sqrt3 sqrt(x+y)+sqrt3 sqrt(xy)#, so
#sqrt(3x+3y)+sqrt(3xy) = 17.5# is equivalent to
#sqrt(x+y)+sqrt(xy) = 17.5/sqrt3#
Differentiate both sides with respect to #x#, using the chain rule.
#1/(2sqrt(x+y))(1+dy/dx) + 1/(2sqrt(xy))(y+x dy/dx) = 0#
#1/(2sqrt(x+y))+ 1/(2sqrt(x+y))dy/dx + y/(2sqrt(xy))+x/(2sqrt(xy)) dy/dx) = 0#
#((sqrt(xy)+xsqrt(x+y))/(sqrt(xy)sqrt(x+y)))dy/dx = (-sqrt(xy)-ysqrt(x+y))/(sqrt(xy)sqrt(x+y)#
#dy/dx = (-sqrt(xy)-ysqrt(x+y))/(sqrt(xy)+xsqrt(x+y))#