How do you implicitly differentiate sqrt(3x+3y) + sqrt(3xy) = 17.5?

1 Answer
Nov 26, 2016

sqrt(3x+3y)+sqrt(3xy) = 17.5

sqrt(3x+3y)+sqrt(3xy) = sqrt3 sqrt(x+y)+sqrt3 sqrt(xy), so

sqrt(3x+3y)+sqrt(3xy) = 17.5 is equivalent to

sqrt(x+y)+sqrt(xy) = 17.5/sqrt3

Differentiate both sides with respect to x, using the chain rule.

1/(2sqrt(x+y))(1+dy/dx) + 1/(2sqrt(xy))(y+x dy/dx) = 0

1/(2sqrt(x+y))+ 1/(2sqrt(x+y))dy/dx + y/(2sqrt(xy))+x/(2sqrt(xy)) dy/dx) = 0

((sqrt(xy)+xsqrt(x+y))/(sqrt(xy)sqrt(x+y)))dy/dx = (-sqrt(xy)-ysqrt(x+y))/(sqrt(xy)sqrt(x+y)

dy/dx = (-sqrt(xy)-ysqrt(x+y))/(sqrt(xy)+xsqrt(x+y))