How do you implicitly differentiate sqrt(3x+3y) + sqrt(3xy) = 17.53x+3y+3xy=17.5?

1 Answer
Nov 26, 2016

sqrt(3x+3y)+sqrt(3xy) = 17.53x+3y+3xy=17.5

sqrt(3x+3y)+sqrt(3xy) = sqrt3 sqrt(x+y)+sqrt3 sqrt(xy)3x+3y+3xy=3x+y+3xy, so

sqrt(3x+3y)+sqrt(3xy) = 17.53x+3y+3xy=17.5 is equivalent to

sqrt(x+y)+sqrt(xy) = 17.5/sqrt3x+y+xy=17.53

Differentiate both sides with respect to xx, using the chain rule.

1/(2sqrt(x+y))(1+dy/dx) + 1/(2sqrt(xy))(y+x dy/dx) = 012x+y(1+dydx)+12xy(y+xdydx)=0

1/(2sqrt(x+y))+ 1/(2sqrt(x+y))dy/dx + y/(2sqrt(xy))+x/(2sqrt(xy)) dy/dx) = 012x+y+12x+ydydx+y2xy+x2xydydx)=0

((sqrt(xy)+xsqrt(x+y))/(sqrt(xy)sqrt(x+y)))dy/dx = (-sqrt(xy)-ysqrt(x+y))/(sqrt(xy)sqrt(x+y)(xy+xx+yxyx+y)dydx=xyyx+yxyx+y

dy/dx = (-sqrt(xy)-ysqrt(x+y))/(sqrt(xy)+xsqrt(x+y))dydx=xyyx+yxy+xx+y