sqrt(3x+3y)+sqrt(3xy) = 17.5√3x+3y+√3xy=17.5
sqrt(3x+3y)+sqrt(3xy) = sqrt3 sqrt(x+y)+sqrt3 sqrt(xy)√3x+3y+√3xy=√3√x+y+√3√xy, so
sqrt(3x+3y)+sqrt(3xy) = 17.5√3x+3y+√3xy=17.5 is equivalent to
sqrt(x+y)+sqrt(xy) = 17.5/sqrt3√x+y+√xy=17.5√3
Differentiate both sides with respect to xx, using the chain rule.
1/(2sqrt(x+y))(1+dy/dx) + 1/(2sqrt(xy))(y+x dy/dx) = 012√x+y(1+dydx)+12√xy(y+xdydx)=0
1/(2sqrt(x+y))+ 1/(2sqrt(x+y))dy/dx + y/(2sqrt(xy))+x/(2sqrt(xy)) dy/dx) = 012√x+y+12√x+ydydx+y2√xy+x2√xydydx)=0
((sqrt(xy)+xsqrt(x+y))/(sqrt(xy)sqrt(x+y)))dy/dx = (-sqrt(xy)-ysqrt(x+y))/(sqrt(xy)sqrt(x+y)(√xy+x√x+y√xy√x+y)dydx=−√xy−y√x+y√xy√x+y
dy/dx = (-sqrt(xy)-ysqrt(x+y))/(sqrt(xy)+xsqrt(x+y))dydx=−√xy−y√x+y√xy+x√x+y