How do you implicitly differentiate sqrt(xy)= x - 2yxy=x2y?

1 Answer
Jun 1, 2015

First, write it as (xy)^{1/2}=x-2y(xy)12=x2y or x^{1/2}y^{1/2}=x-2yx12y12=x2y.

Next, differentiate both sides with respect to xx, assuming that yy is a function of xx. You'll need the Product Rule and the Chain Rule:

\frac{1}{2}x^{-1/2}y^{1/2}+\frac{1}{2}x^{1/2}y^{-1/2}\cdot dy/dx=1-2 dy/dx12x12y12+12x12y12dydx=12dydx.

Finally, solve this equation for dy/dxdydx:

dy/dx(\frac{1}{2}x^{1/2}y^{-1/2}+2)=1-\frac{1}{2}x^{-1/2}y^{1/2}dydx(12x12y12+2)=112x12y12

dy/dx=\frac{1-\frac{1}{2}x^{-1/2}y^{1/2}}{\frac{1}{2}x^{1/2}y^{-1/2}+2}=\frac{1-\frac{\sqrt{y}}{2\sqrt{x}}}{\frac{\sqrt{x}}{2\sqrt{y}}+2}=\frac{2\sqrt{xy}-y}{x+4\sqrt{xy}}dydx=112x12y1212x12y12+2=1y2xx2y+2=2xyyx+4xy