How do you implicitly differentiate #x/y^2-x=1/sin(x)+y#?

1 Answer

#y'=(y^3*csc x*cot x+y-y^3)/(y^3+2x)#

Explanation:

The given equation is

#x/y^2-x=1/sin (x) + y#

differentiate both sides of the equation with respect to x

#d/dx(x/y^2-x)=d/dx(1/sin (x) + y)#

#(y^2*d/dx(x)-x*d/dx(y^2))/(y^2)^2-d/dx(x)=(sin x*d/dx(1)-1*d/dx(sin x))/(sin^2 x)+y'#

#(y^2*1-x*2y*y')/(y^4)-1=(sin x*(0)-1*(cos x))/(sin^2 x)+y'#

#(y^2-2x*y*y')/(y^4)-1=(-cos x)/(sin^2 x)+y'#

Take note: #(-cos x)/(sin^2 x)=-csc x*cot x#

#(y^2)/y^4-(2x*y*y')/(y^4)-1=-csc x*cot x+y'#

#1/y^2-(2xy')/(y^3)-1=-csc x*cot x+y'#

Using transposition, it follows

#-y'-(2xy')/(y^3)=1-csc x*cot x-1/y^2#

Multiply both sides of the equation by #y^3#

#y^3[-y'-(2xy')/(y^3)]=y^3[1-csc x*cot x-1/y^2]#

#-y^3y'-2xy'=y^3-y^3*csc x*cot x-y#

Factor the #y'# and dividing both sides by #(-y^3-2x)#

#((-y^3-2x)y')/((-y^3-2x))=(y^3-y^3*csc x*cot x-y)/(-y^3-2x)#

#cancel((-y^3-2x)y')/cancel((-y^3-2x))=(y^3-y^3*csc x*cot x-y)/(-y^3-2x)#

#y'=(y^3-y^3*csc x*cot x-y)/(-y^3-2x)#

#y'=(y^3*csc x*cot x+y-y^3)/(y^3+2x)#

God bless ....I hope the explanation is useful.