How do you implicitly differentiate -y^2=e^(2x-4y)-2y/x y2=e2x4y2yx?

1 Answer

y'=(x^2*e^(2x-4y)+y)/(2x^2*e^(2x-4y) +x-x^2y)

Explanation:

Start differentiating with respect to x both sides of the equation
-y^2=e^(2x-4y) -2*y/x

d/dx(-y^2)=d/dx(e^(2x-4y)) -d/dx(2*y/x)

(-2y*y')=(e^(2x-4y)*d/dx(2x-4y)) -(2*d/dx(y/x))

-2y*y'=e^(2x-4y)(2-4y') -2*((xy'-y*1)/x^2)

Simplify by dividing by 2

-y*y'=e^(2x-4y)(1-2y') -((xy'-y*1)/x^2)

-y*y'=e^(2x-4y)-2*e^(2x-4y)y' -(xy')/x^2+(y)/x^2

-y*y'=e^(2x-4y)-2*e^(2x-4y)y' -(y')/x+y/x^2

2*e^(2x-4y)y' +(y')/x-y*y'=e^(2x-4y)+y/x^2

Factor the y'

(2*e^(2x-4y) +1/x-y)y'=e^(2x-4y)+y/x^2

Divide both sides by (2*e^(2x-4y) +1/x-y)

((2*e^(2x-4y) +1/x-y)y')/((2*e^(2x-4y) +1/x-y))=(e^(2x-4y)+y/x^2)/(2*e^(2x-4y) +1/x-y)

cancel((2*e^(2x-4y) +1/x-y)y')/cancel((2*e^(2x-4y) +1/x-y))=(e^(2x-4y)+y/x^2)/(2*e^(2x-4y) +1/x-y)

y'=(e^(2x-4y)+y/x^2)/(2*e^(2x-4y) +1/x-y)

Simplify by multiplying the right side by x^2/x^2

y'=((e^(2x-4y)+y/x^2))/((2*e^(2x-4y) +1/x-y))*x^2/x^2

y'=(x^2*e^(2x-4y)+y)/(2x^2*e^(2x-4y) +x-x^2y)

God bless....I hope the explanation is useful.