How do you implicitly differentiate -y^2=xy^3-x^4y y2=xy3x4y?

1 Answer
May 16, 2016

Given -

-y^2=xy^3-x^4yy2=xy3x4y

#-2ydy/dx=[x.3ydy/dx+y^3 . 1]-[x^4dy/dx+y.4x^3]#

-2ydy/dx=3xydy/dx+y^3-x^4+4x^3y2ydydx=3xydydx+y3x4+4x3y
-2ydy/dx-3xydy/dx=y^3-x^4+4x^3y2ydydx3xydydx=y3x4+4x3y
-(2y+3xy)dy/dx=y^3-x^4+4x^3y(2y+3xy)dydx=y3x4+4x3y
-y(2+3x)dy/dx=y^3-x^4+4x^3yy(2+3x)dydx=y3x4+4x3y
dy/dx=(y^3_x^4+4x^3y)/(-y(2+3x)dydx=y3_x4+4x3yy(2+3x)