How do you implicitly differentiate -y^2=xy^3-x^4y −y2=xy3−x4y?
1 Answer
May 16, 2016
Given -
-y^2=xy^3-x^4y−y2=xy3−x4y
#-2ydy/dx=[x.3ydy/dx+y^3 . 1]-[x^4dy/dx+y.4x^3]#
-2ydy/dx=3xydy/dx+y^3-x^4+4x^3y−2ydydx=3xydydx+y3−x4+4x3y
-2ydy/dx-3xydy/dx=y^3-x^4+4x^3y−2ydydx−3xydydx=y3−x4+4x3y
-(2y+3xy)dy/dx=y^3-x^4+4x^3y−(2y+3xy)dydx=y3−x4+4x3y
-y(2+3x)dy/dx=y^3-x^4+4x^3y−y(2+3x)dydx=y3−x4+4x3y
dy/dx=(y^3_x^4+4x^3y)/(-y(2+3x)dydx=y3_x4+4x3y−y(2+3x)