First, the equation will be rewritten to get yx^(-4)-3y^(-2)-y=8
Now we differentiate with respect to x:
d/(dx)[yx^(-4)-3y^(-2)-y]=d/(dx)[8]
d/(dx)[yx^(-4)]-d/(dx)[3y^(-2)]-d/(dx)[y]=d/(dx)[8]
d/(dx)[y]x^(-4)-4yx^(-5)-d/(dx)[3y^(-2)]-d/(dx)[y]=0
Using the chain rule, we get d/(dx)=d/(dy)*(dy)/(dx)
d/(dy)[y]* (dy)/(dx)x^(-4)-4yx^(-5)-d/(dy)[3y^(-2)]* (dy)/(dx)-d/(dy)[y]*(dy)/(dx)=0
(dy)/(dx)x^(-4)-4yx^(-5)+6y^(-3)* (dy)/(dx)-(dy)/(dx)=0
(dy)/(dx)[x^(-4)+6y^(-3)-1]-4yx^(-5)=0
(dy)/(dx)[x^(-4)+6y^(-3)-1]=4yx^(-5)
(dy)/(dx)=(4yx^(-5))/(x^(-4)+6y^(-3)-1)