How do you implicitly differentiate y/x^4-3/y^2-y=8 ?

1 Answer
Dec 1, 2017

(dy)/(dx)=(4yx^(-5))/(x^(-4)+6y^(-3)-1)

Explanation:

First, the equation will be rewritten to get yx^(-4)-3y^(-2)-y=8

Now we differentiate with respect to x:

d/(dx)[yx^(-4)-3y^(-2)-y]=d/(dx)[8]

d/(dx)[yx^(-4)]-d/(dx)[3y^(-2)]-d/(dx)[y]=d/(dx)[8]

d/(dx)[y]x^(-4)-4yx^(-5)-d/(dx)[3y^(-2)]-d/(dx)[y]=0

Using the chain rule, we get d/(dx)=d/(dy)*(dy)/(dx)

d/(dy)[y]* (dy)/(dx)x^(-4)-4yx^(-5)-d/(dy)[3y^(-2)]* (dy)/(dx)-d/(dy)[y]*(dy)/(dx)=0

(dy)/(dx)x^(-4)-4yx^(-5)+6y^(-3)* (dy)/(dx)-(dy)/(dx)=0

(dy)/(dx)[x^(-4)+6y^(-3)-1]-4yx^(-5)=0

(dy)/(dx)[x^(-4)+6y^(-3)-1]=4yx^(-5)

(dy)/(dx)=(4yx^(-5))/(x^(-4)+6y^(-3)-1)