How do you implicitly differentiate -y=xy-e^ysqrt(x-2) ?

1 Answer
Sep 5, 2016

dy/dx=(y(x-5))/{2(x+1)(x-2)(y-1)}.

Explanation:

Let us rewrite the given eqn. as, : e^ysqrt(x-2)=xy+y=y(x+1).

:. ln(e^ysqrt(x-2))=ln{y(x+1)}.

:. lne^y+ln(x-2)^(1/2)=lny+ln(x+1)

:. y+1/2ln(x-2)=lny+ln(x+1).

:. d/dx{y+1/2ln(x-2)}=d/dx{lny+ln(x+1)}.

:. dy/dx+1/2d/dxln(x-2)=d/dx(lny)+d/dxln(x+1).

:. dy/dx+1/2*1/(x-2)=d/dylny*dy/dx+1/(x+1)......"[Chain Rule]".

:. dy/dx+1/(2(x-2))=1/y*dy/dx+1/(x+1.

:. (1-1/y)dy/dx=1/(x+1)-1/(2(x-2)).

:. (y-1)/y*dy/dx={2(x-2)-(x+1)}/{2(x+1)(x-2)}.

:. dy/dx=(y(x-5))/{2(x+1)(x-2)(y-1)}.

Enjoy Maths.!