Reqd. Integral =1/2{arctanx+x/(1+x^2)}.=12{arctanx+x1+x2}.
Explanation:
Take the substitution x=tantx=tant :. dx=sec^2tdt. :. int{1/((1+x^2)^2)}dx =int{1/(1+tan^2t)^2}sec^2tdt=int(1/sec^4t)sec^2tdt=int(cos^4t/cos^2t)dt=intcos^2tdt=int(1+cos2t)/2dt=1/2{t+(sin2t)/2)
Now x=tant rArr t=arc tanx. Further, sin2t =(2tant)/(1+tan^2t)=(2x)/(1+x^2).