How do you integrate 1/((1+x^2)^2)1(1+x2)2?

1 Answer
Jun 14, 2016

Reqd. Integral =1/2{arctanx+x/(1+x^2)}.=12{arctanx+x1+x2}.

Explanation:

Take the substitution x=tantx=tant
:. dx=sec^2tdt.
:. int{1/((1+x^2)^2)}dx =int{1/(1+tan^2t)^2}sec^2tdt=int(1/sec^4t)sec^2tdt=int(cos^4t/cos^2t)dt=intcos^2tdt=int(1+cos2t)/2dt=1/2{t+(sin2t)/2)

Now x=tant rArr t=arc tanx. Further, sin2t =(2tant)/(1+tan^2t)=(2x)/(1+x^2).

:. Reqd. Integral =1/2{arctanx+x/(1+x^2)}.