How do you integrate (1-x^2)^.5(1x2).5?

1 Answer
Jul 4, 2016

= 1/2 x sqrt(1-x^2) + arcsin x/2 + C =12x1x2+arcsinx2+C

Explanation:

int dx qquad sqrt(1-x^2)

trig sub x = sin phi, dx = cos phi dphi

implies int dphi qquad cos phi sqrt(1-sin^2 phi)

= int dphi qquad cos^2 phi

double angle cos 2A = 2 cos^2 A - 1

= int dphi qquad (cos 2 phi + 1)/2

= 1/4 sin 2 phi + phi/2 + C

double angle sin 2A = 2 sin A cos A

= 1/2 x sqrt(1-x^2) + arcsin x/2 + C